Home Slackers
Kibble Matters
Hey, what's that in my food dish??
singapore UGLY
Cruelty 101
It ain't peachy for Singaporean cats
Cats banned from NINETY % of homes
Singapore chooses killing over sterilisation


TNRM 101
The Street Gangs


Earth calling Homo Sapien Is that blood in your lipstick? Does your grub bleed? DAILY donation clicks (FREE)
Bulk Click Donators|Charity Click!

purrsnswipes has moved! We're the
Tipped Ear Clan

Updates are on the way, just that eta is uncertain - traffic jam and problems as listed in our last entry, "Buzz-out. Greetings from Cyber Purgatory". *points to first entry*

Thank you for your patience, and interest, and see you there,
29 June 2006

Wednesday, March 29, 2006

Forget the chicken and the egg, how about "LIFE or CONTINENT"?

What a fascinating view about life, evolution and the EARTH. As I-forgot-his-name said in Jurassic Park: "Life will find a way". Hmmm, or was it "Life will not be denied"? Whatever.

And life created continents... 24 March 2006 Exclusive from New Scientist Print Edition Myles McLeod LIFE on Earth may have driven the evolution of the planet itself. The idea is that ancient microbes provided the chemical energy to create the Earth's continents - a nod to the Gaia hypothesis, in which life helps create the conditions it needs to survive. The theory would solve the puzzle of why the Earth's continental crust appeared when it did, and explain the presence of granite, a substance not found anywhere else in our solar system. The Earth formed 4.6 billion years ago, coalescing as a homogeneous mass that in time separated into the discrete layers we know today: the core, mantle and crust, plus oceans and atmosphere. However, during the first 600 to 800 million years of Earth's existence there were no stable continents. The oldest vestiges of continental crust, which date from the Archaean aeon about 4 billion years ago, are in Acasta in north-west Canada. These rocks are made from granite or a similar material, which is unique to Earth. It is created when basalt rock melts and reforms, becoming enriched in silica, aluminium and certain metals as it reacts with compounds in water. Granitic rocks are less dense than basalt, so they rise to the surface, forming a stable continental crust. The ingredients for granite were there before the Acasta rocks, yet in all that time it didn't form. Now a team of geologists led by Minik Rosing of the Geological Museum and the Nordic Center for Earth Evolution at the University of Copenhagen, Denmark, says the appearance of photosynthetic life might have given this process the kick-start it needed. Rosing's team was struck by how the appearance of the continental crust coincided with the rise of photosynthesis. The fossil record for the time is patchy at best, because microbes are small and fragile, but there is some geological evidence that photosynthesis might have arisen 3.8 billion years ago. Today, photosynthetic organisms, which convert solar energy into usable chemical energy, contribute three times as much energy to the Earth's overall geochemical energy cycle as geological activity driven by the Earth's interior. The first photosynthetic life forms would have made solar energy available for chemical changes, cranking up the Earth's energy cycle and altering its geochemistry, Rosing's team believes (Palaeogeography, Palaeoclimatology, Palaeoecology, vol 232, p 99). "The energy capture from photosynthesis is used to keep oceans and atmosphere out of chemical equilibrium with the rock," says Rosing. This tension enhances weathering cycles, causing more chemical breakdown in the crust compared with physical processes or the limited impact of more obscure organisms, such as microbes that thrive around thermal vents. Such breakdown of basalt produces smectite and illite clays, which in turn play a role in the creation of granite. "The key point is that melting of basalt makes basalt again, while the melting of weathered basalt produces a small amount of granite," says Rosing. "Life might, in the end, be responsible for the presence of continents on Earth." Other geologists agree that this is a novel and imaginative idea. But, they say, the evidence is still weak. For instance, the apparent rarity of granite may be due to other factors, says Martin Line of the University of Tasmania, Australia, such as the size of the Earth, the relative abundance of water on the Earth's surface, or simply because we have only sampled a few rocks on other solar bodies, such as the moon or other planets. From issue 2544 of New Scientist magazine, 24 March 2006, page 12 Methane bugs warmed the young planet Climate-changing microbes that produced methane may have been around 700 million years earlier than thought. These "methanogens" could have helped regulate the climate, providing greenhouse gases and staving off freezing conditions that would have stifled the development of life on Earth. Until now, no direct geological evidence for methanogens has been found in the Archaean aeon, stretching from Earth's formation until about 2.5 billion years ago, although there is circumstantial evidence they may have existed 2.8 billion years ago. Methane comes from three principal sources: the thermal decomposition of organic material, non-biological reactions of simple inorganic compounds and metabolic activity of methanogenic microbes. In each case, the resulting methane contains distinctive levels of the isotope carbon-13. Now a team led by geologist Yuichiro Ueno of Tokyo Institute of Technology, Japan, has found the depleted carbon-13 signature of methanogens in rocks 3.46 billion years old (Nature, vol 440, p 516). The researchers examined veins of quartz and hydrothermal dykes, which are vertical intrusions of precipitates from hydrothermal water, in the Pilbara craton in Western Australia. Cratons are chunks of continental crust that represent the last vestiges of Archaean continents that still exist relatively undisturbed by geological processes. "This study supports conjectures that methanogenesis was one, if not the, primordial form of metabolism powering the earliest organisms on Earth, and lends further credence to the idea that methane was an important greenhouse gas at a time when the sun was much less bright than at present," says Roger Buick of the University of Washington in Seattle, a specialist in the origin and earliest evolution of life. (source: Sign up for FREE newsletter here.)

Yarns to this scratchpost:

Create a Link

<< purrsNswipes